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Abstract. Detecting defects in fabrics is a difficult task as there are a lot of variations in the type of
fabric and the defect itself. Many methods have been proposed to solve this problem, but their detection
speed and accuracy were very low depending on the model being tested. To eliminate the variations and to
improve the performance, we implemented multilevel modelling in our approach. This paper proposes an
improved approach with higher accuracy for fabric defect detection, in which we compare the performance
of various state-of-the-art deep learning models such as MobileNetV2, Xception, VGG19, and InceptionV3
and how their performance changes with the type of fabric. First, a Convolutional Neural Network model
is used to classify the fabric into different types with an accuracy of 97.6%, and then on the basis of the
type of fabric, the best model is used to detect defects in the fabric. This has a significant advantage in
improving the overall performance of fabric defect detection. Further, K-Fold cross-validation has been
performed to check the consistency of the proposed model.
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1 Introduction

Texture assessment is exceptionally critical in the Textile Industry [1], including the detection of defects in
fabrics. The nature of texture depends on indispensable processes of texture review to distinguish the defor-
mities of fabric. The benefits of industrialism have been diminished because of texture imperfections causing
repulsive losses. Conventional deformity discovery strategies are directed in numerous ventures by proficient
human auditors who physically curate the fabric. In any case, such recognition strategies have a few weaknesses,
such as fatigue, dreariness, carelessness, mistake, confusion, and tediousness which cause to diminish the finding
of shortcomings. To address these shortcomings, various image processing techniques have been executed to
naturally and productively distinguish and recognise texture defects.

Development and advancement of the sector normally bring to build the going through huge investment [2].
Be that as it may, the textile industry, like any other sector, experienced various issues. These include some
insurance to diminish the effect of misfortunes that are budgetary, client disappointment, time squandering,
and so on. Fabric defects are probably the greatest test confronting the textile business. Fabric is made in a
day-by-day life utilizing fibers and a usually utilized material. Most fabrics are delivered after passing through
a series of making stages. Various machines and methods are utilized during the making stages.

Fabrics are subjected to pressures and stresses along these lines that cause defects. As indicated by their
structures and directions, defects take various names. The textile business has distinguished in more than 70
types of defects such as laddering, end-out, holes, and oil spots. Unexpected tasks might be the reason for
various defects on the fabric surface during the manufacturing of fabric. Fabric manufacturing is one of the
largest traditional businesses where fabric inspection systems can play a vital role in growing the manufacturing
rate. The process of inspection is really important in any manufacturing procedure, especially from the viewpoint
of an industrialist. The idea of the inspection process is to recognize the errors or defects, on the off chance that
any exist, and at that point to give an alert to the inspector to check the manufacturing procedure and remove
the defective products.

For the most part, fabric defect recognition utilizes two kinds of investigation models. The essential one is the
human-based inspection systems [2]. The second framework is automated-based inspection systems. Accordingly,
human-based defect detection done by specialists’ turns out to be rapidly a mind-boggling and fussy task. In
this manner, having proficient and automated-based frameworks nearby is a significant necessity for improving
unwavering quality and accelerating quality control, which may expand profitability. The subject of automated-
based defect detection has been examined in a few works in the most recent decades. In spite of the fact that
there is no widespread methodology for handling this issue, a few strategies dependent on image processing
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procedures have been proposed in recent years. These strategies were utilized to recognize defects at the image
level, so the precision rate is little, and additionally, it is hard to find the defects precisely. In this way, they
can’t be stretched out to various fabrics. As of late, some different techniques dependent on the local image-level
have been proposed [3], which utilize the base unit as the fundamental activity object to extract image features.

Recognizing defects in fabrics is especially difficult due to a large number of variables. As discussed in the
paragraph above, there are many different types of defects, but these defects are different for different types of
fabrics. During the course of our research, we tried to find the correlation between the fabric type and its defect
detection accuracy for various state-of-the-art deep learning models. We were able to see that certain models
performed better for certain types of fabric. Hence we proceeded further to first determine the type of fabric
(Type A, Type B, Type C, Type D) using a CNN model, and then we identify whether it has defects or not.

2 Defects in Fabric

In order to prepare various categories and forms of fabric items in the industry, fabric materials are used.
Consequently, yarn quality and/or loom defects affect the fabric quality. Fabric defect has been estimated that
the price of fabrics is reduced by 45%-65% [4,5] due to the presence of defects such as dye mark/dye Spot, slack
warp, faulty pattern card, holes, spirality, grease oil/ dirty stains, mispick, slub, wrong end, slack end, and so
on. In a fabric, defects can occur due to: machine faults, color bleeding, yarn problems, excessive stretching,
hole, dirt spot, scratch, poor finishing, crack points, material defects, processing defects, and so on. The textile
business has distinguished more than 70 types of defects [3] such as shear, tear, hole, and oil spot, as shown in
Figure 1 below.

(a) Oil Spot Defect (b) Tear Defect

(c) Shear Defect (d) Paint Spot Defect

Fig. 1: Types of Defects in Fabrics

Hence it is very difficult to identify the exact defect and classify it into types. We focussed on classifying
whether the fabric has defects or not for the course of this research. To do this, we used various state-of-the-art
deep learning models like VGG 19, Xcpetion, Inception V3, and MobileNet V2.

3 Fabric Classification

Not only are there different types of defects, but there are also different types of fabrics that one comes across
in the textile industry. Fabric can be distinguished on the basis of pattern, design, and the weaving method.
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Some of the different types of fabric are shown in Figure 2 below. As we can see, the fabric is broadly classified
into four types on the basis of the pattern. These are- (1) Dot Pattern, (2) Thin Stripes, (3) Twill Plaid, and
(4) Houndstooth. Each fabric has different sewing patterns, due to which the defects found in each of them
be very different. Hence if we classify the fabric type first and then detect the defect, the prediction will be
distinct and achieve better accuracy. These four types of fabrics will be classified using a CNN model, which
we developed. These fabrics are taken from the ZJU-Leaper dataset [6] which is a benchmark dataset for fabric
defect detection and comparative study. This dataset plans to set a benchmark suite for vision-based texture
deformity recognition, including picture dataset, assessment convention, and pattern tests. Once we are able to
identify the type of fabric, we can further analyze which deep learning model will give the user the best accuracy
for detecting the defect.

(a) Dot Pattern (b) Houndstooth

(c) Thin Stripes (d) Twill Plaid

Fig. 2: Different Types of Fabrics

4 Proposed Methodology for Defect Detection

Traditional AI-based [7] defect detection methodologies can be ordered into three principle gatherings: Sta-
tistical, Structural methodology, and Model-based methodology. We will discuss these methodologies and how
our approach differs from them. In the statistical approach, grey-level properties are utilized to describe the
textural property of texture images which are called 1st-order statistics and higher-order statistics, separately.
The 1st-order statistics can gauge the variance of grey-level intensity among different features between defective
areas and background. The higher-order statistics depend on the joint probability distribution of pixel sets. In
any case, the inconvenience of this strategy is that the defect size must be sufficiently enormous to empower
a compelling estimation of the texture property. So the methodology is feeble in handling little local defects.
Additionally, the calculation of higher-order statistics is tedious, not to mention that this approach require a
high-quality image of the texture rather than the fabric as a whole. The structural approach is generally utilized
on properties of the primitives of the defect-free fabric texture for the nearness of the flawed region and their
related placement rules. Apparently, the practicability of this methodology is to congestion to those textures
with regular macrotexture.

In the subsequent class model-based methodology, the generally utilized strategies are Markov random field
and Gaussian Markov random field. The texture features a contemplated texture and can signify all the more
exactly spatial interrelationships between the grey levels in the texture. However, like the methodologies based
on second-order statistics, additionally, it is tough for a model-based methodology to deal with identifying
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small-sized defects in light of the fact that the methodologies, as a rule, require an adequately large region
of the texture to assess the parameters of the models. The above-mentioned methodologies have their own
advantages and disadvantages. We came up with a Multilevel Model-based approach consisting of a CNN model
for categorizing the type of fabric, and then we selected the best deep learning model for detecting whether it
has defects or not. As an intermediate step, we try to find a correlation between the type of fabric and the deep
learning model, as some models are better at detecting defects in a particular type of fabric.

Fig. 3: CNN Architecture Diagram

Step 1- The dataset is prepared from the ZJU-Leaper dataset [6]. The dataset consists of four types of fabrics
- Type A, Type B, Type C, and Type D. Each type of fabric has distinct patterns and characteristics. The
dataset has a total of 2000 images, where each type of fabric has 500 images, out of which 250 are defective,
and 250 are non-defective.
Step 2- A Convolutional Neural Network model is developed for the classification of the fabric. Figure 3 depicts
the architecture of the CNN model.
Step 3- The proposed CNN model is trained on the dataset to predict the type of fabric. Hyperparameter tuning
is done to achieve an accuracy of 97.6%.
Step 4 - Various state-of-the-art deep learning models- InceptionV3, Xception, VGG19, and MobileNetV2 were
selected and then trained to predict if the fabric was defective or non-defective. Table I shows the number of
parameters of each model.
Step 5 - The models are compared, and it is concluded that different models give more accurate predictions for
different types of fabric. Table II shows the comparison between models.
Step 6 - Two dense layers and one GlobalAveragePooling layer are added to increase the accuracy of the models.
Table III shows the improved accuracies of the models. It is observed that different models give more accurate
predictions for different types of fabric.
Step 7 - A Multilevel machine learning model is proposed where a CNN model is used for fabric classification,
and the best-suited state-of-the-art deep learning model is used to detect defects in the fabric.
Step 8 - K - Fold cross-validation is performed to verify the consistency of the CNN model and the best model
selected for each type of fabric.

The flowchart of our proposed methodology is shown in Figure 4.

Fig. 4: Flowchart of the Proposed Methodology
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5 Deep Learning Architectures

In the proposed approach, we have utilized profound convolutional brain networks in light of VGG (VGG19),
GoogLeNet (Inception V3 and Xception) designs, and MobileNet (MobileNet V2) engineering, pre-prepared for
fabric defect detection task on the given dataset.

Fig. 5: Proposed Multilevel Model using Deep Learning Models

1) VGG Architecture: The VGG networks [8] with 16 layers (VGG16) and with 19 layers (VGG19) were the
premise of the Visual Geometry Group (VGG) accommodation in the ImageNet Challenge 2014, where the VGG
group got the first and the second places in the restriction and order tracks separately. The VGG engineering
is organized, beginning with five blocks of convolutional layers followed by three completely associated layers.
Convolutional layers utilize 3 × 3 parts with a step of 1 and cushioning of 1 to guarantee that every initiation
map holds similar spatial aspects as the past layer. A redressed straight unit (ReLU) initiation is performed just
after every convolution, and a maximum pooling activity is utilized toward the finish of each block to diminish
the spatial aspect. Max pooling layers utilize 2 × 2 bits with a step of 2 and no cushioning to guarantee that each
spatial component of the enactment map from the past layer is divided. Two completely associated layers with
4096 ReLU enacted units are then utilized before the last 1000 completely associated softmax layers. A drawback
of the VGG19 models is that they are more costly to assess and utilize a ton of memory and boundaries. VGG19
has roughly 143 million boundaries. The greater part of these boundaries (around 100 million) are in the first
completely associated layer, and it was since found that these completely associated layers could be taken out
with no presentation downsize, altogether decreasing the number of vital boundaries.

2) GoogLeNet Architecture: The GoogLeNet [9] design was presented as GoogLeNet (Inception V1), later
refined as Inception V2, and as of late as Inception V3. While Inception modules are thoughtfully convolutional
highlight extractors, they exactly have all the earmarks of being fit for learning more extravagant portrayals with
fewer boundaries. Conventional convolutional layer endeavors to learn channels in a 3D space, with 2 spatial
aspects (width and level) and a channel aspect. In this way, a solitary convolution part is entrusted, all the
while planning cross-channel relationships and spatial connections. The thought behind the Inception module
is to make this cycle simpler and more proficient by unequivocally figuring it into a progression of tasks that
would freely take a gander at cross-channel relationships and at spatial connections. The Xception [10] design
is an expansion of the Inception engineering, which replaces the standard Inception modules with depth-wise
detachable convolutions. Rather than parcelling input information into a few packed lumps, it maps the spatial
relationships for each result channel independently and afterwards plays out a 1 × 1 depth-wise convolution
to catch a cross-channel connection. This is basically identical to a current activity known as a "depth-wise
distinct convolution," which comprises of a depth-wise convolution (a spatial convolution performed freely for
each channel) trailed by a point-wise convolution (a 1×1 convolution across channels). Xception marginally beats
InceptionV3 on the ImageNet dataset and incomprehensibly outflanks it on a bigger picture grouping dataset
with 17,000 classes. In particular, it has a comparable number of boundaries as Inception V3, suggesting a
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more prominent computational proficiency. Xception has 22,855,952 teachable boundaries while Inception V3
has 23,626,728 teachable boundaries.

3) MobileNet Architecture: MobileNetV2 [11] is a basic improvement over MobileNetV1 and pushes the
bleeding edge for versatile visual affirmation, including gathering, object revelation, and semantic division. Mo-
bileNetV2 is conveyed as a part of the TensorFlow-Slim Image Classification Library, or you can start exploring
MobileNetV2 promptly in Colaboratory. Then again, you can download the scratch pad and examine it locally
using Jupyter. MobileNetV2 is also available as modules on TF-Hub. MobileNetV2 develops the considerations
from MobileNetV1, including depth-wise separable convolution as viable design blocks. Regardless, V2 familiar-
izes two new features with the design: 1) direct bottlenecks between the layers and 2) backup course of action
relationship between the bottlenecks.

Table 1: Number Of Parameters For Deep Learning Models
Deep Learning Model Number of Parameters

MobileNetV2 3,608,678
Xception 22,998,606
VGG19 143,667,240

InceptionV3 23,885,392

6 Multilevel Modelling

The proposed framework consists of three components. (1) Data collection, (2) Fabric type classification using
a Convolutional Neural Network and (3) Defect detection using the most suitable deep learning model for that
type of fabric. The Block diagram of the proposed framework is shown in Figure 6. The framework takes 224x224
resolution of images, classifies the type of fabric and then uses the best state-of-the-art deep learning model to
detect whether the fabric is defective or non-defective.

Fig. 6: Block Diagram of the Multilevel Model
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Phase I: The first phase includes identifying four different types of fabric with distinct features and char-
acteristics from the ZJU-Leaper dataset [6]. The dataset of 2000 images is then prepared, where each type of
fabric has 500 images, out of which 250 are defective and 250 are non-defective. Training and testing data are
generated in the ratio of 80:20, respectively. Phase II: The CNN model [12] is used for fabric classification and
predicts the type of fabric with an accuracy of 97.6%. Phase III: on the basis of the predictions from Phase II,
the best-suited model among MobileNetV2, Xception, VGG 19, and InceptionV3 is used to predict if the fabric
is defective or non-defective. Figure 7 shows the entire workflow of the proposed methodology constituting the
phases involved.

Fig. 7: Workflow of the Proposed Methodology

7 Model Evaluation

Various parameters such as accuracy [13] and K-fold cross-validation [14] are calculated to evaluate the perfor-
mance of the proposed Multilevel model. The results are compiled in the form of tables and have been shown
below. Repeated K-fold cross-validation has been performed to test the robustness of the model.

A. Model Evaluation Parameters Model evaluation parameters are calculated using the Accuracy achieved.
Accuracy is the measure of the correctness of the classifier. Accuracy is computed as:

Accuracy = (TP + TN)/TotalData (1)

Table 2: Comparison of Accuracy Of The Various Deep Learning Models For Different Type Of Fabrics
Deep Learning Models

MobileNetV2 Xception VGG19 InceptionV3
TypeA 0.96 0.95 0.92 0.95
TypeB 0.90 0.94 0.90 0.95
TypeC 0.74 0.76 0.68 0.72
TypeD 0.83 0.83 0.72 0.91
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Table 3: Comparison of Improved Accuracy After Adding 2 Dense Layers and Global Average Pooling
Deep Learning Models

MobileNetV2 Xception VGG19 InceptionV3
TypeA 0.96 0.97 0.93 0.96
TypeB 0.92 0.93 0.93 0.95
TypeC 0.80 0.76 0.71 0.76
TypeD 0.86 0.89 0.72 0.94

B. K-Fold Cross Validation Estimating the accuracy of a classifier induced by supervised learning algorithms
is important not only to predict its future prediction accuracy but also for choosing a classifier from a given set
(model selection). To ensure that the proposed Multilevel model is consistent with low bias and low variance,
repeated K-fold Cross Validation is performed. In this present work, 5-fold Cross Validation is repeated ten
times. This process of K-fold cross-validation is applied to all four deep learning models and for the CNN
model. Figure 8 shows a graph that is obtained by plotting the results of K-Fold Cross Validation against the
accuracy for each model, and the overlapping lines signify that the proposed multilevel model is robust.

Fig. 8: Graph of K-Fold Cross Validation

8 Result Analysis

The models are trained on the training dataset and are further tested on the testing dataset. The Multilevel
ensemble model is a combination of a CNN model and four deep learning models. The models are evaluated
on various parameters, as mentioned above. The proposed CNN model has achieved an accuracy of 97.6% for
fabric classification. Table 2 shows a comparison between the accuracies of different state-of-the-art models such
as MobileNetv2, Xception, VGG19, and InceptionV3 for predicting defects in different types of fabrics. Table
3 shows that the performance of the models has been further improved by the proposed models. These tables
help conclude that there is a correlation between the type of fabric and deep learning models as different models
perform better for defect detection in different types of fabrics.
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A problem that may occur while training is overfitting. To deal with the issues of overfitting, the model
should be cross-validated, and if the resultant accuracy after various runs is consistent in all the runs, then the
trained models are not overfitted. The accuracy is validated by applying 10-fold cross-validation five times, as
shown in Figure 8. After the above analysis, we can conclude that the proposed model is not overfitted. Hence,
the multilevel model approach of first classifying the type of fabric and then using the best-suited state-of-the-
art model for defect detection provides a significant advantage in improving the overall performance of fabric
defect detection.

9 Conclusion And Future Work

In today’s world, Fabric Defect Detection can find numerous applications in eliminating wasteful production
and improving cost-effectiveness. A Multilevel model for fabric detection is proposed, which combines a CNN
model and four deep learning models (InceptionV3, Xception, VGG19, and MobileNetV2), which achieves an
average accuracy of 97.6%. In the future, we intend to study different deep learning architectures like Artificial
Neural Networks and stacked autoencoders for Fabric defect detection on a larger dataset and with higher
computational power. We also intend to further classify the defects detected as a future scope for this research.
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